Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Biomolecules ; 13(5)2023 05 11.
Article in English | MEDLINE | ID: covidwho-20239134

ABSTRACT

It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of ß-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.


Subject(s)
Alzheimer Disease , COVID-19 , Diabetes Mellitus , Metabolic Diseases , Neurodegenerative Diseases , Humans , AMP-Activated Protein Kinases/metabolism , Post-Acute COVID-19 Syndrome , TOR Serine-Threonine Kinases/metabolism , Alzheimer Disease/metabolism , Neurodegenerative Diseases/metabolism , Brain/metabolism
2.
Brain Behav Immun ; 109: 251-268, 2023 03.
Article in English | MEDLINE | ID: covidwho-2258334

ABSTRACT

COVID-19 and especially Long COVID are associated with severe CNS symptoms and may place persons at risk to develop long-term cognitive impairments. Here, we show that two non-infective models of SARS-CoV-2 can cross the blood-brain barrier (BBB) and induce neuroinflammation, a major mechanism underpinning CNS and cognitive impairments, even in the absence of productive infection. The viral models cross the BBB by the mechanism of adsorptive transcytosis with the sugar N-acetylglucosamine being key. The delta and omicron variants cross the BB B faster than the other variants of concern, with peripheral tissue uptake rates also differing for the variants. Neuroinflammation induced by icv injection of S1 protein was greatly enhanced in young and especially in aged SAMP8 mice, a model of Alzheimer's disease, whereas sex and obesity had little effect.


Subject(s)
Alzheimer Disease , COVID-19 , Humans , Mice , Animals , Blood-Brain Barrier/metabolism , Alzheimer Disease/metabolism , SARS-CoV-2 , COVID-19/complications , Neuroinflammatory Diseases , Post-Acute COVID-19 Syndrome
3.
J Pharmacol Sci ; 151(2): 93-109, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2283329

ABSTRACT

We have no definitive treatment for dementia characterized by prolonged neuronal death due to the enormous accumulation of foreign matter, such as ß-amyloid. Since Alzheimer's type dementia develops slowly, we may be able to delay the onset and improve neuronal dysfunction by enhancing the energy metabolism of individual neurons. TND1128, a derivative of 5-deazaflavin, is a chemical known to have an efficient self-redox ability. We expected TND1128 as an activator for mitochondrial energy synthesis. We used brain slices prepared from mice 22 ± 2 h pretreated with TND1128 or ß-NMN. We measured Ca2+ concentrations in the cytoplasm ([Ca2+]cyt) and mitochondria ([Ca2+]mit) by using fluorescence Ca2+ indicators, Fura-4F, and X-Rhod-1, respectively, and examined the protective effects of drugs on [Ca2+]cyt and [Ca2+]mit overloading by repeating 80K exposure. TND1128 (0.01, 0.1, and 1 mg/kg s.c.) mitigates the dynamics of both [Ca2+]cyt and [Ca2+]mit in a dose-dependent manner. ß-NMN (10, 30, and 100 mg/kg s.c.) also showed significant dose-dependent mitigating effects on [Ca2+]cyt, but the effect on the [Ca2+]mit dynamics was insignificant. We confirmed the mitochondria-activating potential of TND1128 in the present study. We expect TND1128 as a drug that rescues deteriorating neurons with aging or disease.


Subject(s)
Alzheimer Disease , Mitochondria , Mice , Animals , Mitochondria/metabolism , Brain/metabolism , Alzheimer Disease/metabolism , Oxidation-Reduction
4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: covidwho-2281145

ABSTRACT

The COVID-19 pandemic has caused millions of deaths and remains a major public health burden worldwide. Previous studies found that a large number of COVID-19 patients and survivors developed neurological symptoms and might be at high risk of neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). We aimed to explore the shared pathways between COVID-19, AD, and PD by using bioinformatic analysis to reveal potential mechanisms, which may explain the neurological symptoms and degeneration of brain that occur in COVID-19 patients, and to provide early intervention. In this study, gene expression datasets of the frontal cortex were employed to detect common differentially expressed genes (DEGs) of COVID-19, AD, and PD. A total of 52 common DEGs were then examined using functional annotation, protein-protein interaction (PPI) construction, candidate drug identification, and regulatory network analysis. We found that the involvement of the synaptic vesicle cycle and down-regulation of synapses were shared by these three diseases, suggesting that synaptic dysfunction might contribute to the onset and progress of neurodegenerative diseases caused by COVID-19. Five hub genes and one key module were obtained from the PPI network. Moreover, 5 drugs and 42 transcription factors (TFs) were also identified on the datasets. In conclusion, the results of our study provide new insights and directions for follow-up studies of the relationship between COVID-19 and neurodegenerative diseases. The hub genes and potential drugs we identified may provide promising treatment strategies to prevent COVID-19 patients from developing these disorders.


Subject(s)
Alzheimer Disease , COVID-19 , Neurodegenerative Diseases , Parkinson Disease , Humans , Pandemics , Protein Interaction Maps/genetics , Parkinson Disease/genetics , Alzheimer Disease/metabolism , Computational Biology/methods , Gene Expression Profiling , Gene Regulatory Networks
5.
Neuroscience ; 512: 110-132, 2023 02 21.
Article in English | MEDLINE | ID: covidwho-2235664

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of the 2019 coronavirus disease (COVID-19), has affected more than 20 million people in Brazil and caused a global health emergency. This virus has the potential to affect various parts of the body and compromise metabolic functions. The virus-mediated neural inflammation of the nervous system is due to a storm of cytokines and oxidative stress, which are the clinical features of Alzheimer's disease (AD). This neurodegenerative disease is aggravated in cases involving SARS-CoV-2 and its inflammatory biomarkers, accelerating accumulation of ß-amyloid peptide, hyperphosphorylation of tau protein, and production of reactive oxygen species, which lead to homeostasis imbalance. The cholinergic system, through neurons and the neurotransmitter acetylcholine (ACh), modulates various physiological pathways, such as the response to stress, sleep and wakefulness, sensory information, and the cognitive system. Patients with AD have low concentrations of ACh; hence, therapeutic methods are aimed at adjusting the ACh titers available to the body for maintaining functionality. Herein, we focused on acetylcholinesterase inhibitors, responsible for the degradation of ACh in the synaptic cleft, and muscarinic and nicotinic receptor agonists of the cholinergic system owing to the therapeutic potential of the cholinergic anti-inflammatory pathway in AD associated with SARS-CoV-2 infection.


Subject(s)
Alzheimer Disease , COVID-19 , Neurodegenerative Diseases , Humans , Alzheimer Disease/metabolism , Acetylcholinesterase/metabolism , Neuroimmunomodulation , Pandemics , SARS-CoV-2/metabolism , Acetylcholine/metabolism , Oxidative Stress , Cholinergic Agents/pharmacology
6.
Curr Neurovasc Res ; 20(1): 162-169, 2023.
Article in English | MEDLINE | ID: covidwho-2224629

ABSTRACT

Apolipoprotein E4 (APOE4) is one of the primary genetic risk factors for late-onset of Alzheimer's disease (AD). While its primary function is to transport cholesterol, it also regulates metabolism, aggregation, and deposition of amyloid-ß (Aß) in the brain. The disruption in the generation and removal of Aß in the brain is the primary cause of memory and cognitive loss and thus plays a significant role in the development of AD. In several prior genetic investigations, the APOE4 allele has been linked to higher susceptibility to severe acute respiratory syndrome (SARSCoV- 2) infection and COVID-19 mortality. However, information on the involvement of APOE4 in the underlying pathology and clinical symptoms is limited. Due to the high infection and mortality rate of COVID-19 in AD individuals, challenges have been identified in the management of AD patients during the COVID-19 pandemic. In order to provide evidence-based, more effective healthcare, it is critical to identify underlying concerns and, preferably, biomarkers. The risk variant APOE4 imparts enhanced infectivity by the underlying coronavirus SARS-CoV-2 at a cellular level, genetic level, and route level. Here we review existing advances in clinical and basic research on the AD-related gene APOE, as well as the role of APOE in AD pathogenesis, using neurobiological evidence. Moreover, the role of APOE in severe COVID-19 in Alzheimer's patients has also been reviewed.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , COVID-19 , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Brain/metabolism , COVID-19/metabolism , Pandemics , SARS-CoV-2
7.
J Neurol ; 270(4): 1823-1834, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2209336

ABSTRACT

Emerging evidence indicates that the etiologic agent responsible for coronavirus disease 2019 (COVID-19), can cause neurological complications. COVID-19 may induce cognitive impairment through multiple mechanisms. The aim of the present study was to describe the possible neuropsychological and metabolic neuroimaging consequences of COVID-19 12 months after patients' hospital discharge. We retrospectively recruited 7 patients (age [mean ± SD] = 56 years ± 12.39, 4 men) who had been hospitalized for COVID-19 with persistent neuropsychological deficits 12 months after hospital discharge. All patients underwent cognitive assessment and brain (18F-FDG) PET/CT, and one also underwent 18F-amyloid PET/CT. Of the seven patients studied, four had normal glucose metabolism in the brain. Three patients showed various brain hypometabolism patterns: (1) unilateral left temporal mesial area hypometabolism; (2) pontine involvement; and (3) bilateral prefrontal area abnormalities with asymmetric parietal impairment. The patient who showed the most widespread glucose hypometabolism in the brain underwent an 18F-amyloid PET/CT to assess the presence of Aß plaques. This examination showed significant Aß deposition in the superior and middle frontal cortex, and in the posterior cingulate cortex extending mildly in the rostral and caudal anterior cingulate areas. Although some other reports have already suggested that brain hypometabolism may be associated with cognitive impairment at shorter intervals from SarsCov-2 infection, our study is the first to assess cognitive functions, brain metabolic activity and in a patient also amyloid PET one year after COVID-19, demonstrating that cerebral effects of COVID-19 can largely outlast the acute phase of the disease and even be followed by amyloid deposition.


Subject(s)
Alzheimer Disease , COVID-19 , Cognitive Dysfunction , Male , Humans , Middle Aged , Positron Emission Tomography Computed Tomography , Retrospective Studies , COVID-19/complications , COVID-19/diagnostic imaging , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Fluorodeoxyglucose F18/metabolism , Cognition , Alzheimer Disease/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism
8.
Hum Mol Genet ; 32(11): 1797-1813, 2023 05 18.
Article in English | MEDLINE | ID: covidwho-2189102

ABSTRACT

Neuroinflammation and immune dysregulation play a key role in Alzheimer's disease (AD) and are also associated with severe Covid-19 and neurological symptoms. Also, genome-wide association studies found many risk single nucleotide polymorphisms (SNPs) for AD and Covid-19. However, our understanding of underlying gene regulatory mechanisms from risk SNPs to AD, Covid-19 and phenotypes is still limited. To this end, we performed an integrative multi-omics analysis to predict gene regulatory networks for major brain regions from population data in AD. Our networks linked transcription factors (TFs) to TF binding sites (TFBSs) on regulatory elements to target genes. Comparative network analyses revealed cross-region-conserved and region-specific regulatory networks, in which many immunological genes are present. Furthermore, we identified a list of AD-Covid genes using our networks involving known and Covid-19 genes. Our machine learning analysis prioritized 36 AD-Covid candidate genes for predicting Covid severity. Our independent validation analyses found that these genes outperform known genes for classifying Covid-19 severity and AD. Finally, we mapped genome-wide association study SNPs of AD and severe Covid that interrupt TFBSs on our regulatory networks, revealing potential mechanistic insights of those disease risk variants. Our analyses and results are open-source available, providing an AD-Covid functional genomic resource at the brain region level.


Subject(s)
Alzheimer Disease , COVID-19 , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Gene Regulatory Networks , Genome-Wide Association Study , Multiomics , COVID-19/genetics , Brain/metabolism , Phenotype
9.
Neurology ; 99(14): e1486-e1498, 2022 Oct 04.
Article in English | MEDLINE | ID: covidwho-2109249

ABSTRACT

BACKGROUND AND OBJECTIVES: Increased anxious-depressive symptomatology is observed in the preclinical stage of Alzheimer disease (AD), which may accelerate disease progression. We investigated whether ß-amyloid, cortical thickness in medial temporal lobe structures, neuroinflammation, and sociodemographic factors were associated with greater anxious-depressive symptoms during the COVID-19 confinement. METHODS: This retrospective observational study included cognitively unimpaired older adults from the Alzheimer's and Families cohort, the majority with a family history of sporadic AD. Participants performed the Hospital Anxiety and Depression Scale (HADS) during the COVID-19 confinement. A subset had available retrospective (on average: 2.4 years before) HADS assessment, amyloid [18F] flutemetamol PET and structural MRI scans, and CSF markers of neuroinflammation (interleukin-6 [IL-6], triggering receptor expressed on myeloid cells 2, and glial fibrillary acidic protein levels). We performed multivariable linear regression models to investigate the associations of prepandemic AD-related biomarkers and sociodemographic factors with HADS scores during the confinement. We further performed an analysis of covariance to adjust by participants' prepandemic anxiety-depression levels. Finally, we explored the role of stress and lifestyle changes (sleep patterns, eating, drinking, smoking habits, and medication use) on the tested associations and performed sex-stratified analyses. RESULTS: We included 921 (254 with AD biomarkers) participants. ß-amyloid positivity (B = 3.73; 95% CI = 1.1 to 6.36; p = 0.006), caregiving (B = 1.37; 95% CI 0.24-2.5; p = 0.018), sex (women: B = 1.95; 95% CI 1.1-2.79; p < 0.001), younger age (B = -0.12; 95% CI -0.18 to -0.052; p < 0.001), and lower education (B = -0.16; 95% CI -0.28 to -0.042; p = 0.008) were associated with greater anxious-depressive symptoms during the confinement. Considering prepandemic anxiety-depression levels, we further observed an association between lower levels of CSF IL-6 (B = -5.11; 95% CI -10.1 to -0.13; p = 0.044) and greater HADS scores. The results were independent of stress-related variables and lifestyle changes. Stratified analysis revealed that the associations were mainly driven by women. DISCUSSION: Our results link AD-related pathophysiology and neuroinflammation with greater anxious-depressive symptomatology during the COVID-19-related confinement, notably in women. AD pathophysiology may increase neuropsychiatric symptomatology in response to stressors. This association may imply a worse clinical prognosis in people at risk for AD after the pandemic and thus deserves to be considered by clinicians. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier NCT02485730.


Subject(s)
Alzheimer Disease , COVID-19 , Aged , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Anxiety , Biomarkers , Depression , Female , Glial Fibrillary Acidic Protein , Humans , Interleukin-6 , Male , Positron-Emission Tomography , Retrospective Studies , tau Proteins/metabolism
11.
Front Immunol ; 13: 967356, 2022.
Article in English | MEDLINE | ID: covidwho-2065510

ABSTRACT

Alzheimer's disease (AD)-like cognitive impairment, a kind of Neuro-COVID syndrome, is a reported complication of SARS-CoV-2 infection. However, the specific mechanisms remain largely unknown. Here, we integrated single-nucleus RNA-sequencing data to explore the potential shared genes and pathways that may lead to cognitive dysfunction in AD and COVID-19. We also constructed ingenuity AD-high-risk scores based on AD-high-risk genes from transcriptomic, proteomic, and Genome-Wide Association Studies (GWAS) data to identify disease-associated cell subtypes and potential targets in COVID-19 patients. We demonstrated that the primary disturbed cell populations were astrocytes and neurons between the above two dis-eases that exhibit cognitive impairment. We identified significant relationships between COVID-19 and AD involving synaptic dysfunction, neuronal damage, and neuroinflammation. Our findings may provide new insight for future studies to identify novel targets for preventive and therapeutic interventions in COVID-19 patients.


Subject(s)
Alzheimer Disease , COVID-19 , Cognitive Dysfunction , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , COVID-19/complications , COVID-19/genetics , Cognitive Dysfunction/genetics , Genome-Wide Association Study , Humans , Proteomics , RNA , SARS-CoV-2 , Sequence Analysis, RNA
12.
Int J Mol Sci ; 23(11)2022 May 24.
Article in English | MEDLINE | ID: covidwho-1884204

ABSTRACT

Alzheimer's disease (AD) is a complex chronic disease of the brain characterized by several neurodegenerative mechanisms and is responsible for most dementia cases in the elderly. Declining immunity during ageing is often associated with peripheral chronic inflammation, and chronic neuroinflammation is a constant component of AD brain pathology. In the Special Issue published in 2021 eight papers were collected regarding different aspects of neurodegeneration associated with AD. Five papers presented and discussed infectious agents involved in brain AD pathology and three discussed data regarding receptors regulation and possible treatment of the disease. Below I will discuss and further elaborate on topics related to infections, inflammation, and neurodegenerative pathways in AD and brain senescence. The topic presented here may contribute to early intervention protocols for preventing or slowing the progression of cognitive deterioration in the elderly.


Subject(s)
Alzheimer Disease , Cognition Disorders , Aged , Alzheimer Disease/metabolism , Brain/metabolism , Humans , Inflammation/complications , Neurons/metabolism
13.
Mar Drugs ; 20(4)2022 Apr 02.
Article in English | MEDLINE | ID: covidwho-1810015

ABSTRACT

This paper examined the toxins naturally produced by marine dinoflagellates and their effects on increases in ß-amyloid plaques along with tau protein hyperphosphorylation, both major drivers of Alzheimer's disease (AD). This approach is in line with the demand for certain natural compounds, namely those produced by marine invertebrates that have the potential to be used in the treatment of AD. Current advances in AD treatment are discussed as well as the main factors that potentially affect the puzzling global AD pattern. This study focused on yessotoxins (YTXs), gymnodimine (GYM), spirolides (SPXs), and gambierol, all toxins that have been shown to reduce ß-amyloid plaques and tau hyperphosphorylation, thus preventing the neuronal or synaptic dysfunction that ultimately causes the cell death associated with AD (or other neurodegenerative diseases). Another group of toxins described, okadaic acid (OA) and its derivatives, inhibit protein phosphatase activity, which facilitates the presence of phosphorylated tau proteins. A few studies have used OA to trigger AD in zebrafish, providing an opportunity to test in vivo the effectiveness of new drugs in treating or attenuating AD. Constraints on the production of marine toxins for use in these tests have been considered. Different lines of research are anticipated regarding the action of the two groups of toxins.


Subject(s)
Alzheimer Disease , Dinoflagellida , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Animals , Dinoflagellida/metabolism , Marine Toxins/pharmacology , Okadaic Acid/pharmacology , Plaque, Amyloid , Zebrafish/metabolism , tau Proteins/metabolism
14.
J Neural Transm (Vienna) ; 129(7): 847-859, 2022 07.
Article in English | MEDLINE | ID: covidwho-1797629

ABSTRACT

Individuals with Alzheimer's disease and other neurodegenerative diseases have been exposed to excess risk by the COVID-19 pandemic. COVID-19's main manifestations include high body temperature, dry cough, and exhaustion. Nevertheless, some affected individuals may have an atypical presentation at diagnosis but suffer neurological signs and symptoms as the first disease manifestation. These findings collectively show the neurotropic nature of SARS-CoV-2 virus and its ability to involve the central nervous system. In addition, Alzheimer's disease and COVID-19 has a number of common risk factors and comorbid conditions including age, sex, hypertension, diabetes, and the expression of APOE ε4. Until now, a plethora of studies have examined the COVID-19 disease but only a few studies has yet examined the relationship of COVID-19 and Alzheimer's disease as risk factors of each other. This review emphasizes the recently published evidence on the role of the genes of early- or late-onset Alzheimer's disease in the susceptibility of individuals currently suffering or recovered from COVID-19 to Alzheimer's disease or in the susceptibility of individuals at risk of or with Alzheimer's disease to COVID-19 or increased COVID-19 severity and mortality. Furthermore, the present review also draws attention to other uninvestigated early- and late-onset Alzheimer's disease genes to elucidate the relationship between this multifactorial disease and COVID-19.


Subject(s)
Alzheimer Disease , COVID-19 , Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Humans , Pandemics , Risk Factors , SARS-CoV-2
15.
J Integr Neurosci ; 21(2): 73, 2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1776815

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia worldwide. Individuals affected by the disease gradually lose their capacity for abstract thinking, understanding, communication and memory. As populations age, declining cognitive abilities will represent an increasing global health concern. While AD was first described over a century ago, its pathogenesis remains to be fully elucidated. It is believed that cognitive decline in AD is caused by a progressive loss of neurons and synapses that lead to reduced neural plasticity. AD is a multifactorial disease affected by genetic and environmental factors. The molecular hallmarks of AD include formation of extracellular ß amyloid (Aß) aggregates, neurofibrillary tangles of hyperphosphorylated tau protein, excessive oxidative damage, an imbalance of biothiols, dysregulated methylation, and a disproportionate inflammatory response. Recent reports have shown that viruses (e.g., Herpes simplex type 1, 2, 6A/B; human cytomegalovirus, Epstein-Barr virus, hepatitis C virus, influenza virus, and severe acute respiratory syndrome coronavirus 2, SARS-CoV-2), bacteria (e.g., Treponema pallidum, Borrelia burgdorferi, Chlamydia pneumoniae, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, Fusobacterium nucleatum, Aggregatibacter actinomycetemcmitans, Eikenella corrodens, Treponema denticola, and Helicobacter pylori), as well as eukaryotic unicellular parasites (e.g., Toxoplasma gondii) may factor into cognitive decline within the context of AD. Microorganisms may trigger pathological changes in the brain that resemble and/or induce accumulation of Aß peptides and promote tau hyperphosphorylation. Further, the mere presence of infectious agents is suspected to induce both local and systemic inflammatory responses promoting cellular damage and neuronal loss. Here we review the influence of infectious agents on the development of AD to inspire new research in dementia based on these pathogens.


Subject(s)
Alzheimer Disease , COVID-19 , Epstein-Barr Virus Infections , Alzheimer Disease/metabolism , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human , Humans , SARS-CoV-2
16.
Eur Rev Med Pharmacol Sci ; 26(6): 2201-2214, 2022 03.
Article in English | MEDLINE | ID: covidwho-1776800

ABSTRACT

Disruption of intracellular Ca2+ homeostasis plays an important role as an upstream pathology in Alzheimer's disease (AD), and correction of Ca2+ dysregulation has been increasingly proposed as a target of future effective disease-modified drugs for treating AD. Calcium dysregulation is also an upstream pathology for the COVID-19 virus SARS-CoV-2 infection and replication, leading to host cell damage. Clinically available drugs that can inhibit the disturbed intracellular Ca2+ homeostasis have been repurposed to treat COVID-19 patients. This narrative review aims at exploring the underlying mechanism by which lithium, a first line drug for the treatment of bipolar disorder, inhibits Ca2+ dysregulation and associated downstream pathology in both AD and COVID-19. It is suggested that lithium can be repurposed to treat AD patients, especially those afflicted with COVID-19.


Subject(s)
Alzheimer Disease , COVID-19 Drug Treatment , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Lithium/therapeutic use , Lithium Compounds/therapeutic use , SARS-CoV-2
17.
CNS Neurol Disord Drug Targets ; 21(3): 235-245, 2022.
Article in English | MEDLINE | ID: covidwho-1674157

ABSTRACT

It is noticeable how the novel coronavirus has spread from the Wuhan region of China to the whole world, devastating the lives of people worldwide. All the data related to the precautionary measures, diagnosis, treatment, and even the epidemiological data are being made freely accessible and reachable in a very little time as well as being rapidly published to save humankind from this pandemic. There might be neurological complications of COVID-19 and patients suffering from neurodegenerative conditions like Alzheimer's disease and Parkinson's disease might have repercussions as a result of the pandemic. In this review article, we have discussed the effect of SARS-CoV-2 viral infection on the people affected with neurodegenerative disorders such as Parkinson's and Alzheimer's. It primarily emphasizes two issues, i.e., vulnerability to infection and modifications of course of the disease concerning the clinical neurological manifestations, the advancement of the disease and novel approaches to support health care professionals in disease management, the susceptibility to these diseases, and impact on the severity of disease and management.


Subject(s)
Alzheimer Disease/epidemiology , Alzheimer Disease/therapy , COVID-19/epidemiology , COVID-19/therapy , Disease Management , Parkinson Disease/epidemiology , Parkinson Disease/therapy , Alzheimer Disease/metabolism , COVID-19/metabolism , Humans , Parkinson Disease/metabolism , SARS-CoV-2/metabolism
18.
J Alzheimers Dis ; 85(2): 729-744, 2022.
Article in English | MEDLINE | ID: covidwho-1518457

ABSTRACT

BACKGROUND: COVID-19 pandemic is a global crisis which results in millions of deaths and causes long-term neurological sequelae, such as Alzheimer's disease (AD). OBJECTIVE: We aimed to explore the interaction between COVID-19 and AD by integrating bioinformatics to find the biomarkers which lead to AD occurrence and development with COVID-19 and provide early intervention. METHODS: The differential expressed genes (DEGs) were found by GSE147507 and GSE132903, respectively. The common genes between COVID-19 and AD were identified. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interactions (PPI) network analysis were carried out. Hub genes were found by cytoscape. A multivariate logistic regression model was constructed. NetworkAnalyst was used for the analysis of TF-gene interactions, TF-miRNA coregulatory network, and Protein-chemical Interactions. RESULTS: Forty common DEGs for AD and COVID-19 were found. GO and KEGG analysis indicated that the DEGs were enriched in the calcium signal pathway and other pathways. A PPI network was constructed, and 5 hub genes were identified (ITPR1, ITPR3, ITPKB, RAPGEF3, MFGE8). Four hub genes (ITPR1, ITPR3, ITPKB, RAPGEF3) which were considered as important factors in the development of AD that were affected by COVID-19 were shown by nomogram. Utilizing NetworkAnalyst, the interaction network of 4 hub genes and TF, miRNA, common AD risk genes, and known compounds is displayed, respectively. CONCLUSION: COVID-19 patients are at high risk of developing AD. Vaccination is required. Four hub genes can be considered as biomarkers for prediction and treatment of AD development caused by COVID-19. Compounds with neuroprotective effects can be used as adjuvant therapy for COVID-19 patients.


Subject(s)
Alzheimer Disease/genetics , COVID-19/virology , Protein Interaction Maps/genetics , SARS-CoV-2/pathogenicity , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Alzheimer Disease/virology , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling/methods , Humans , SARS-CoV-2/genetics
19.
Folia Neuropathol ; 59(3): 232-238, 2021.
Article in English | MEDLINE | ID: covidwho-1463957

ABSTRACT

The major route of entry for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) into human host cells is by means of the angiotensin-converting enzyme-2 (ACE2) transmembrane receptor. This zinc-containing carboxypeptidase and membrane-integral surface receptor is ubiquitous and widely expressed in multiple cell types. Hence SARS-CoV-2, an unusually large RNA virus that causes coronavirus disease 2019 (COVID-19) has the remarkable capacity to invade many different types of human host cells simultaneously. Although COVID-19 is generally considered to be primarily an acute respiratory disease SARS-CoV-2 also targets specific anatomical regions of the central nervous system (CNS). In the normal CNS the highest ACE2 levels of expression are found within the medullary respiratory centers of the brainstem and this, in part, may explain the susceptibility of numerous COVID-19 patients to severe respiratory distress. About ~35% of all COVID-19 patients experience neurological and neuropsychiatric symptoms, and a pre-existing diagnosis of Alzheimer's disease (AD) predicts the highest risk of COVID-19 yet identified, with the highest mortality among elderly AD patients. In the current study of multiple anatomical regions of AD brains compared to age-, post-mortem interval- and gender-matched controls (n = 10 regions, n = 32 brains), ACE2 expression was found to be significantly up-regulated in AD in the occipital lobe, temporal lobe neocortex and hippocampal CA1. The temporal lobe and hippocampus of the brain are also targeted by the inflammatory neuropathology that accompanies AD, suggesting a significant mechanistic overlap between COVID-19 and AD, strongly centered on invasion by the neurotropic SARS-CoV-2 virus via the increased presence of ACE2 receptors in limbic regions of the AD-affected brain.


Subject(s)
Alzheimer Disease/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Brain/metabolism , COVID-19 , Aged , Aged, 80 and over , Female , Humans , Male , SARS-CoV-2 , Up-Regulation
20.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: covidwho-1350316

ABSTRACT

Increasing evidence suggests that elderly people with dementia are vulnerable to the development of severe coronavirus disease 2019 (COVID-19). In Alzheimer's disease (AD), the major form of dementia, ß-amyloid (Aß) levels in the blood are increased; however, the impact of elevated Aß levels on the progression of COVID-19 remains largely unknown. Here, our findings demonstrate that Aß1-42, but not Aß1-40, bound to various viral proteins with a preferentially high affinity for the spike protein S1 subunit (S1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the viral receptor, angiotensin-converting enzyme 2 (ACE2). These bindings were mainly through the C-terminal residues of Aß1-42. Furthermore, Aß1-42 strengthened the binding of the S1 of SARS-CoV-2 to ACE2 and increased the viral entry and production of IL-6 in a SARS-CoV-2 pseudovirus infection model. Intriguingly, data from a surrogate mouse model with intravenous inoculation of Aß1-42 show that the clearance of Aß1-42 in the blood was dampened in the presence of the extracellular domain of the spike protein trimers of SARS-CoV-2, whose effects can be prevented by a novel anti-Aß antibody. In conclusion, these findings suggest that the binding of Aß1-42 to the S1 of SARS-CoV-2 and ACE2 may have a negative impact on the course and severity of SARS-CoV-2 infection. Further investigations are warranted to elucidate the underlying mechanisms and examine whether reducing the level of Aß1-42 in the blood is beneficial to the fight against COVID-19 and AD.


Subject(s)
Amyloid beta-Peptides/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Peptide Fragments/metabolism , SARS-CoV-2/enzymology , Spike Glycoprotein, Coronavirus/metabolism , A549 Cells , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Animals , COVID-19/complications , COVID-19/metabolism , Chlorocebus aethiops , Humans , Interleukin-6/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Peptide Fragments/chemistry , Protein Subunits/chemistry , Protein Subunits/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL